Braid groups of non-orientable surfaces and the Fadell-Neuwirth short exact sequence

نویسنده

  • John Guaschi
چکیده

Let M be a compact, connected non-orientable surface without boundary and of genus g ¥ 3. We investigate the pure braid groups PnpMq of M, and in particular the possible splitting of the Fadell-Neuwirth short exact sequence 1 ÝÑ PmpMz tx1, . . . , xnuq ãÝÑ Pn mpMq p ÝÑ PnpMq ÝÑ 1, where m, n ¥ 1, and p is the homomorphism which corresponds geometrically to forgetting the last m strings. This problem is equivalent to that of the existence of a section for the associated fibration p : Fn mpMq ÝÑ FnpMq of configuration spaces, defined by pppx1, . . . , xn, xn 1, . . . , xn mqq px1, . . . , xnq. We show that p and p admit a section if and only if n 1. Together with previous results, this completes the resolution of the splitting problem for surfaces pure braid groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Braid groups of surfaces and one application to a Borsuk Ulam type theorem

During initial lectures we present the full and pure Artin braid groups. We give presentations of these groups and study several of their properties. We compute their centers, de ne a special element called Garside and study its properties. For the pure braid groups, we show how to write them as iterated product of free groups. Then we move on to the study of the full and pure braid groups of s...

متن کامل

The braid groups of the projective plane and the Fadell-Neuwirth short exact sequence

We study the pure braid groups Pn(RP) of the real projective plane RP2, and in particular the possible splitting of the Fadell-Neuwirth short exact sequence 1 −→ Pm(RP \ {x1, . . . , xn}) −֒→ Pn+m(RP 2) p∗ −→ Pn(RP) −→ 1, where n ≥ 2 and m ≥ 1, and p∗ is the homomorphismwhich corresponds geometrically to forgetting the last m strings. This problem is equivalent to that of the existence of a sect...

متن کامل

The braid groups of the projective plane

Let Bn(RP ) (respectively Pn(RP )) denote the braid group (respectively pure braid group) on n strings of the real projective plane RP 2 . In this paper we study these braid groups, in particular the associated pure braid group short exact sequence of Fadell and Neuwirth, their torsion elements and the roots of the ‘full twist’ braid. Our main results may be summarised as follows: first, the pu...

متن کامل

Ordering pure braid groups on closed surfaces

We prove that the pure braid groups on closed, orientable surfaces are bi-orderable, and that the pure braid groups on closed, non-orientable surfaces have generalized torsion, thus they are not bi-orderable.

متن کامل

Ordering Pure Braid Groups on Compact, Connected Surfaces

The purpose of this paper is to answer the following question: Are pure braid groups on compact, connected surfaces bi-orderable? We will prove that the answer is positive for orientable surfaces, and negative for the non-orientable ones. In this section we give the basic definitions and classical results. We also explain what is known about orders on braid groups, and finally we state our resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009